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Solitons with cubic and quintic nonlinearities modulated in space and time
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This work deals with soliton solutions of the nonlinear Schrédinger equation with cubic and quintic non-
linearities. We extend the procedure put forward in a recent paper [J. Belmonte-Beitia et al., Phys. Rev. Lett.
100, 164102 (2008)], and we solve the equation in the presence of a linear background and cubic and quintic
interactions which are modulated in space and time. As a result, we show how a simple parameter can be used
to generate brightlike or darklike localized nonlinear waves which oscillate in several distinct ways, driven by
the space and time dependence of the parameters that control the trapping potential and the cubic and quintic

nonlinearities.
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The nonlinear Schrodinger equation (NLSE) has been
studied in a diversity of situations. The nonlinear interactions
are usually of cubic nature, but there are systems which en-
gender cubic and quintic (CQ) nonlinearities. The case of CQ
nonlinearities opens new possibilities, and there are many
interesting applications, especially in nonlinear optics, in fi-
bers where the CQ nonlinearities may be used, for instance,
to describe pulse propagation in double-doped optical fibers,
when the type of dopant varies along the fiber, with the value
and sign of the cubic and quintic parameters that control the
nonlinearities being adjusted by properly choosing the char-
acteristics of the two dopants [1]. There are other applica-
tions, and here we quote the Bose-Einstein condensates
(BEC), where a diversity of nonlinearities may appear driven
by controlled optical interactions [2].

A particularly important scenario for solitons concerns the
NLSE in the case of a single spatial dimension with a linear
term and cubic nonlinearity. However, we can change the
linear parameter to cause it to trap the system. In this case it
is named the Gross-Pitaevskii equation [3], and the linear
parameter v is now modified to v(x), with explicit depen-
dence on the spatial coordinate x. Usually, the potential v(x)
is a background potential and has the form of the harmonic
potential, with the purpose of trapping the system in a finite
region in space, or some spatially periodically oscillating
pattern, if the purpose is to entrap the system into a periodic
lattice. This equation has gained further importance recently,
mainly because of its direct application to the study of BECs
[4], in fibers and in photonic crystals and other periodic sys-
tems [5,6]. Other applications include the study of nonlinear
tunneling of spatial and temporal optical solitons in optical
organic materials of practical use to ultrafast photonic tech-
nologies [7].

The pioneer work by Serkin and Hasegawa (SH) [8] has
introduced an interesting procedure to deal with the nonau-
tonomous NLSE. It is based on a similarity transformation,
which transforms the nonautonomous NLSE equation into a
stationary equation, which is easier to solve. The SH proce-
dure has inspired several investigations [9]. In particular, in
the recent work by Belmonte-Beitia, Pérez-Garcia, Veksler-
chik, and Konotop (BPVK) [10] one deals with the equation
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Here v(x,7) and g(x,r) may now vary, being functions with
both space and time dependence, the first one being the trap-
ping potential, and the second one describing the cubic non-
linearity. In the present work we shall follow the BPVK pro-
cedure, which is well explained in [10] and so we do not
review it here. Instead, we extend the method to another
problem, focusing our attention on the CQ nonlinear equa-
tion
A2
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where v(x,1) is the trapping potential, and g;(x,) and gs(x,?)
control the nonlinear cubic and quintic interactions, respec-
tively. The validity of the one-dimensional approach is given
explicitly in [10], and the quintic term which we have added
in (2) may simulate three-body collisions and/or deviation of
the trapped condensate from the one dimensionality [11].
The trapping potential and nonlinearities to be used below
are typical of BECs, and the results obtained may stimulate
new experiments in the field.

In this work, we provide a way of making the BPVK
procedure work in this scenario, involving the presence of
CQ nonlinearities. The result allows one to obtain explicit
solutions for some specific choices of parameters, leading us
to interesting localized solutions of the bright or dark type,
depending on the vanishing or not of the eigenvalue of the
associated stationary nonlinear equation, as we explain be-
low.

The idea is to write the solution of (2) as

W(x,1) = p(x,0e " ND(L(x, 1)), 3)
in order to rewrite (2) as the stationary equation

d*P
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where u is the eigenvalue of the nonlinear equation above
and G; and G5 are real constants which control the CQ non-
linearities. The substitution of (3) into (2) leads to (4), but
now we must have

dp  dp (9l ox)]
p— A+

ot PR (5a)
2
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We can introduce a function &(x,f) such that {(x,7)
=F(&(x,1)). In this case, we write &(x,1)=y(t)x+ &(r). This
choice is interesting because it allows us to determine the
width of the localized solution in the form 1/(¢) and its
center-of-mass position as —4&(¢)/ y(¢). With Egs. (5) we can
obtain the new set of equations

p(x,1) = [y/(FI98)]"2, (6a)
d)(x,t) __ (ﬁy/&t)x2 B ((95/(9t)x ralo), (6b)
4y 2
_1&p 9 ((7_¢>2 wy'
vt = pc?)c2 o \ax/) p4 ’ (6¢)
g3(x,1) = G3y'p®, (6d)
g5(x.t) = GsG3'p2g3(x.1) = Gs¥*p %, (6e)

where a(f) is an arbitrary function of time. The choice of
F(&) is to be done in such a way that we obtain finite-energy
solutions of the CQ nonlinear equation.

This is the general procedure, and we note from (6e) that
if we take the limit G5s— 0, we obtain gs(x,)—0, and this
leads us back to the case set forward in [10]. This result is
robust. In fact, we have shown that the procedure can be
extended to other nonlinearities: if in (2) we add the new
term g;(x,1)|W|®W, etc., then in (4) we should add G,|®|°D,
etc., and after (6e) we should include the new expression
87(x,0=G7G5'p7gs5(x,0)=G,G3 ' p~g3(x,0)=G;7*p™"", and
so on. We will deal with the more general case in another
work [12], and below we focus attention on the important
case of CQ nonlinearities.

Up to here, we have been very general. However, to illus-
trate the procedure with examples of interest, let us focus our
attention on the case of specific nonlinearities. This is a non-
trivial task, but we know that in the case of BECs with con-
trolled optical interactions, we can have a diversity of non-
linearities [1-11]. Thus, in the present work we suppose that
the cubic nonlinearity is given explicitly by

212
g3(x7t) = '}’eg b 3 (7)

where b is a real parameter which controls the behavior of
the cubic nonlinearity—we will use b=8 where required.
With this choice we have

22
p(x,t) — G§/6,y1/2€ &°/6D . (8)

The quintic nonlinearity is now controlled by
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and the potential given by Eq. (6¢) must have the form
0(nt) = W+ fix+ - wPGE R (10)

and w, f1, and f,, are time-dependent functions such that
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We define y=1/v in order to rewrite (11a) in the form of
the Ermakov-Pinney equation [10,13]

—+4w2(t))(=%. (12)

This equation has a solution for 7y in the form
We) = [2y7(2) + 2y5(e) W2T V2. (13)

Here W is the Wronskian of the two linearly independent
solutions y, and y, of the Mathieu equation (d”y/d:?)
+4w*(1)y=0. See Ref. [13] for more details on this.

We now choose

0*(1) =1 + £ cos(wyt), (14)

in order to obtain analytical solutions. The above results are
general and can be used to investigate explicit examples, as
we consider below. Before searching for explicit solutions,
however, let us remark that investigations concerning spe-
cific criteria for the adiabaticity of nonlinear wave equations
and of soliton solutions to such equations and issues related
to parametric amplification of elementary excitations due to
the periodic modulation of the trapping potential and nonlin-
earities were studied before in [14,15], respectively.

An important issue which appears in the case of CQ non-
linearities is that we can solve Eq. (4) for bright and dark
solitons, depending on the values of the parameters that con-
trol the nonlinearities in a specific system. As the first ex-
ample, let us consider the simpler case in which the station-
ary equation (4) has vanishing eigenvalue, x=0. In this case,
if we choose the cubic and quintic parameters as G;=2 and
Gs=-3, we can write Eq. (4) in the form

()

di*

The solution is given by ®(£)=1/y1+¢2. It has a bell-shaped
form, and it is of the bright type, as we plot in Fig. 1(a). To
have the correct boundary condition, we must set {— % as
x— *oo, and so must choose {(x,t)=F(&(x,t)) properly in
order to make the solution behave according to the required
boundary conditions. According to Egs. (6), we choose

F(§)=G§”3fd§e§2’3"2. We note that the bright solution is lo-
calized, but it is thicker than the hyperbolic secant, the stan-

=20%() - 39°(). (15)
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FIG. 1. (Color online) Plots of ®({) for the bright soliton (a)
(blue, solid line) and the sech({) (red, dashed line) and for the dark
soliton (b) (blue, solid line) and the tanh({) (red, dashed line).

dard bright soliton, which is also plotted in Fig. 1(a), for
comparison.

As we know, the form found above for the bright soliton
can also be obtained in models of relativistic scalar fields,
but this will be reported in another work [16]. We will get
into this following the lines of [17], which suggests several
distinct ways of modifying the bell-shaped form of brightlike
solutions, an issue of direct interest for practical applications,
as we will illustrate in [12].

To get to the darklike solution, let us now choose a non-
vanishing eigenvalue, u# 0. In order to get explicitly simple
analytical solution we consider, for instance, the case u=3,
G5=6, and Gs=-3. In this case, Eq. (4) changes to

2
d;zg) ==3®()+60%(Y)-30°()).  (16)

The solution is given by ®({)={¢/ \/ng. It has the form of a
kink, as we show in Fig. 1(b), and so |®(¢)|?> is now of the
dark type. It is interesting to note that this form of solution
has also appeared in high-energy physics, as reported before
in [18]. It is thicker than the standard darklike soliton which
is described by the hyperbolic tangent, which we also plot in
Fig. 1(b), for comparison.

Equation (15) leads to the brightlike solutions. In this case
the wave function which solves Eq. (2) acquires the form

QU6112,i6 e—§2/6b2
7—2 , (1 7)
V1I+

where ¢=¢(x,1) is real, obtained via the Eq. (6b).

W(x,1) =

20

FIG. 2. (Color online) Plots of the trapping potential v(x,7)
given by (18a) for the resonant brightlike case (a) and by (20a) for
the resonant darklike case (b), in the range —3 <x<3 for the time
evolution in the interval 0 <r<<20.
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FIG. 3. (Color online) Plots of [W(x,7)|? for the resonant bright
soliton for €=0.5 and wy=1 (a) and of the breathing bright soliton
for e=0 (b). The initial data for Eq. (12) are X(O)z\s’i and
dy/d1(0)=0.

A specific solution can be constructed, which leads to
resonant solitons. It is given by &(r)=0, u=0, and a(z)
=[v*(1)dt. In this case we obtain

v(x,1) = w(1)x?, (18a)

g5(x,1) = = 207134 (18b)

with g;(x,7) given by (7). In Fig. 2(a) we plot the trapping
potential (18a) in the standard form to show how it behaves
as a function of space and time. This is to be compared with
the trapping potential of the other case, for u# 0, where the
dark solitons appear.

Solutions of the brightlike form nicely appear when one
adequately chooses both & and wy in Eq. (14). In Fig. 3, we
show the resonant and breathing solitons for specific choices
of the parameters €=0.5, wy=1, and €=0, respectively. We
can also obtain quasiperiodic and moving solitons, but we
will leave this to the longer work [12].

As we have already seen, the Eq. (16) gives the darklike
solutions. In this case, Eq. (3) takes the form

61/6 71/2 ot Z e—§2/6b2
V1+2
If we take 8(r)=0, w+#0, and a(t)=J2(t)dt, we obtain

v(x,1) = 0*(£)x* — u6=%3 )/26252/31’2,

W(x,t) = (19)

(20a)

g5(x,t) - %6—1/364§2/3b2’ (20b)

with g;(x,7) given by (7). In Fig. 2(b) we plot the trapping
potential (20a) in the standard form, for the resonant solu-
tion, to show how it behaves as a function of space and time.

2 for the resonant dark
soliton for €=0.5 and wy=1 (a) and of the breathing dark soliton for
€=0 (b). The initial data for (12) as in Fig. 3.

FIG. 4. (Color online) Plots of [W(x,)
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FIG. 5. (Color online) Plot of |W(x,7)* for the quasiperiodic
dark soliton with £=0.5 and wy=v2/2 in (14) (a). The quasiperi-
odic behavior is better seen from the soliton profile at panel (b). The
initial data for (12) as in Fig. 3.

Here we see that for the darklike soliton, the trapping poten-
tial has a different behavior, if compared with the case of
brightlike soliton—see Fig. 2. The presence of a nonvanish-
ing u modifies both the form and deepness of the trapping
potential in the darklike case.

In the darklike case, we also have several soliton solu-
tions. The resonant dark soliton appears with an appropriate
choice for & and w, in Eq. (14), as we show in Fig. 4. We can
also have the breathing soliton. It is obtained taking £=0 in
(14). In this case we have w(z)=1, and this leads us to ¥(z)
=2/\1+15 cos?(21). The |W(x,)|* for darklike soliton of the
breathing type is also shown in Fig. 4. If we take a)0=\5/ 2
in (14), we can use the above y(f) to obtain quasiperiodic
solitons, as we show explicitly in Fig. 5.

Up to here we have chosen &(7)=0, to fix the center of
mass of the solution; however, if we choose &(f) #0 we can
cause it to move. For simplicity, we consider the case €=0 in
(14), and take () as above. Thus, we obtain f;(#)=0 in
(11b) and f,(r)=0 in (1lc) with the introduction of 7{(r)
=[9*(t)dt, which leads to &(f)=cos[27(¢)] and a(f)=7(r)
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FIG. 6. (Color online) Plot of |W(x, )| for the moving breathing
dark soliton (a). The center-of-mass motion is better seen from the
profile at panel (b). The initial data for (12) as in Fig. 3.

+(1/4)sin[47(r)]. With this, we get to the case of a moving
dark soliton, as we show explicitly in Fig. 6.

In this work we have extended the procedure set forward
in the recent paper [10] to the case of cubic and quintic
nonlinearities. As we have shown explicitly, the procedure is
robust and can be generalized to higher (odd) nonlinearities
very naturally, algorithmically. This result opens a new route
for bright and dark solitons, with a diversity of possibilities
of practical applications.

To strengthen the result, we have shown explicitly that the
system can support bright or dark solitons, depending on the
way we make the eigenvalue of the stationary nonlinear Eq.
(4) vanish, in the case of bright solitons, or not, in the case of
dark solitons. In the specific case of dark solitons, we have
shown how to find the solutions with the resonant, breathing,
quasiperiodic and moving behavior. A more detailed discus-
sion is under preparation [12].
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